Effect of Ultrasonic Nano-Crystal Surface Modification (UNSM) on the Passivation Behavior of Aged 316L Stainless Steel

نویسندگان

  • Ki-Tae Kim
  • Jung-Hee Lee
  • Young-Sik Kim
چکیده

Stainless steels have good corrosion resistance in many environments but welding or aging can decrease their resistance. This work focused on the effect of aging time and ultrasonic nano-crystal surface modification on the passivation behavior of 316L stainless steel. In the case of slightly sensitized 316L stainless steel, increasing the aging time drastically decreased the pitting potential, increased the passive current density, and decreased the resistance of the passive film, even though aging did not form chromium carbide and a chromium depletion zone. This behavior is due to the micro-galvanic corrosion between the matrix and carbon segregated area, and this shows the importance of carbon segregation in grain boundaries to the pitting corrosion resistance of stainless steel, in addition to the formation of the chromium depletion zone. UNSM (Ultrasonic Nano Crystal Surface Modification)-treatment to the slightly sensitized 316L stainless steel increased the pitting potential, decreased the passive current density, and increased the resistance of the passive film. However, in the case of heavily sensitized 316L stainless steel, UNSM-treatment decreased the pitting potential, increased the passive current density, and decreased the resistance of the passive film. This behavior is due to the dual effects of the UNSM-treatment. That is, the UNSM-treatment reduced the carbon segregation, regardless of whether the stainless steel 316L was slightly or heavily sensitized. However, since this treatment made mechanical flaws in the outer surface in the case of the heavily sensitized stainless steel, UNSM-treatment may eliminate chromium carbide, and this flaw can be a pitting initiation site, and therefore decrease the pitting corrosion resistance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An investigation on the passivation behavior of nitrogen enriched AISI 316L austenitic stainless steel

In the present work the effects of plasma nitridization on the passivation behavior of AISI 316L was investigated. To do this; nitriding treatments were carried out at 420°C for 1, 2, 4 and 16 hours. The phase composition and structure of the nitrided layer were studied by Low Angle X-ray diffraction and Scanning Electron Microscopy. The hardness of samples also was evaluated by Vickers microha...

متن کامل

The Effect of Surface Treatment on Corrosion behavior of Surgical 316L Stainless Steel Implant

The AISI 316 L Stainless Steel (SS) specimens were exposed to passivation surface through two different processes including; holding in 40-vol% HNO3 at temperature of 60 ºC for 30 min and 15-vol%H2SO4 at ambient temperature for 1 hour. The corrosion behavior of specimens was evaluated in physiological solutions by electrochemical in vitro tests through linear an...

متن کامل

Effects of Surface Treatment on Corrosion Resistance of 304L and 316L Stainless Steel Implants in Hank’s Solution

The enormous demands for metal implant have given rise to a search for cheap material with good bio-tolerability and resistance to corrosion. Although stainless steel has these properties and is widely used for this purpose, its long term application is still a concern. The corrosion resistance of stainless steel depends on the passive layer. Herein, chemical surface treatment, including passiv...

متن کامل

Design and investigation of TiO2 –SiO2 thin films on AISI 316L stainless steel for tribological properties and corrosion protection

The TiO2–SiO2 thin films were deposited on AISI 316L stainless steel via sol-gel method. Then, the effect of the added amount of SiO2 on the structure, morphology and mechanical properties of the films and corrosion behavior of AISI 316L stainless steel substrate were investigated. So, X-ray diffraction, field-emission scanning electron microscopy, atomic force microscopy, depth-sensing indenta...

متن کامل

Nano-structure TiO2 film coating on 316L stainless steel via sol-gel technique for blood compatibility improvement

Objective(s):  Titanium oxides are known to be appropriate hemocompatible materials which are suggested as coatings for blood-contacting devices. Little is known about the influence of nanometric crystal structure, layer thickness, and semiconducting characteristics of TiO2 on blood hemostasis.   Materials and Methods: Having used sol-gel dip coating method in this study, TiO2 thin films were d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017